Cartan–Helgason theorem, Poisson transform, and Furstenberg–Satake compactifications

نویسنده

  • Adam Korányi
چکیده

The connections between the objects mentioned in the title are used to give a short proof of the Cartan–Helgason theorem and a natural construction of the compactifications.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Symmetric powers and the Satake transform

‎This paper gives several examples of the basic functions‎ ‎introduced in recent years by Ng^o‎. ‎These are mainly‎ ‎conjectures based on computer experiment‎.  

متن کامل

A Fatou-type Theorem for Harmonic Functions on Symmetric Spaces1 by S. Helgason and A. Koranyi

1. Introduction. The result to be proved in this article is that if u is a bounded harmonic function on a symmetric space X and x 0 any point in X then u has a limit along almost every geodesic in X starting at x 0 (Theorem 2.3). In the case when X is the unit disk with the non-Euclidean metric this result reduces to the classical Fatou theorem (for radial limits). When specialized to this case...

متن کامل

Van Den Ban-schlichtkrull-wallach Asymptotic Expansions on Non-symmetric Domains

Let X = G/K be a homogeneous Riemannian manifold where G is the identity component of its isometry group. A C∞ function F on X is harmonic if it is annihilated by every element of DG(X), the algebra of all G-invariant differential operators without constant term. One of the most beautiful results in the harmonic analysis of symmetric spaces is the Helgason conjecture, which states that on a Rie...

متن کامل

About remainders in compactifications of paratopological groups

In this paper‎, ‎we prove a dichotomy theorem for remainders in‎ ‎compactifications of paratopological groups‎: ‎every remainder of a ‎paratopological group $G$ is either Lindel"{o}f and meager or‎ ‎Baire‎. Furthermore, ‎we give a negative answer to a question posed in [D‎. ‎Basile and A‎. ‎Bella‎, ‎About remainders in compactifications of homogeneous spaces‎, ‎Comment‎. ‎Math‎. ‎Univ‎. ‎Caroli...

متن کامل

Beurling’s Theorem for Riemannian Symmetric Spaces Ii

We prove two versions of Beurling’s theorem for Riemannian symmetric spaces of arbitrary rank. One of them uses the group Fourier transform and the other uses the Helgason Fourier transform. This is the master theorem in the quantitative uncertainty principle.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008